Skip to Main Content

    References

  • Dupont J, de Souza RF, Suarez PAZ. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev. 2002;102:36673692.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Lamy C, Leger J, Srinivasan S. Direct methanol fuel cells: from a 20th century electrochemist鈥檚 dream to a 21st century emerging technology. In: Bockris JO, Conway BE, White RE, editors. Modern aspects of electrochemistry No. 34. Boston: Springer; 2006. p. 53118.聽
  • Singh R, Awasthi R. Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation. Catal Sci Technol. 2011;1:778783.聽[Crossref], [Web of Science ®],聽
  • Zhao X, Yin M, Ma L, et al. Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci. 2011;4:27362753.聽[Crossref], [Web of Science ®],聽
  • Kang Y, Pyo JB, Ye X, et al. Synthesis, shape control and methanol electro-oxidation properties of Pt鈥揨n alloy and Pt3Zn intermetallic nanocrystals. ACS Nano. 2012;6:56425647.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Wei Z, Li L, Luo Y, et al. Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes. J Phys Chem B. 2006;110:2605526061.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Kadirgan F, Beyhan S, Atilan T. Preparation and characterization of nano-sized Pt鈥揚d/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. Int J Hydrogen Energy. 2009;34:43124320.聽[Crossref], [Web of Science ®],聽
  • Wang AL, Xu H, Feng JX, et al. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. J Am Chem Soc. 2013;135:1070310709.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Jin M, Zhang H, Xie Z, et al. Palladium concave nanocubes with high鈥恑ndex facets and their enhanced catalytic properties. Angew Chem Int Ed. 2011;50:78507854.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Yin J, Shan S, Ng M, et al. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts. Langmuir. 2013;29:92499258.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Hu C, Zhai X, Zhao Y, et al. Small-sized Pd-Cu nanocapsules on 3D graphene for high-performance ethanol oxidation. Nanoscale. 2014;6:27682775.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Yan B, Wang C, Xu H, et al. Facile synthesis of a porous Pd/Cu alloy and its enhanced performance toward methanol and formic acid electrooxidation. ChemPlusChem. 2017;82:11211128.聽[Crossref], [Web of Science ®],聽
  • Yang C, Zhou M, Gao L. Highly alloyed PtRu nanop旺财体育 confined in porous carbon structure as a durable electrocatalyst for methanol oxidation. ACS Appl Mater Interface. 2014;6:1893818950.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Antolini E. The problem of Ru dissolution from Pt-Ru catalysts during fuel cell operation: analysis and solutions. J Solid State Electrochem. 2011;15:455472.聽[Crossref], [Web of Science ®],聽
  • Mallick K, Witcomb M, Scurrell M. Redox catalytic properties of gold nanocluster: evidence of electron relay effect. Appl Phys A. 2005;80:797801.聽[Crossref], [Web of Science ®],聽
  • Mallick K, Witcomb M, Scurrell M. Supported gold catalysts prepared by in-situ reduction technique: preparation, characterization and catalytic activity measurements. Appl Catal A Gen. 2004;259:163168.聽[Crossref], [Web of Science ®],聽
  • Mallick K, Witcomb M, Scurrell M. Polymer stabilized colloidal gold: A convenient method for the synthesis of nanop旺财体育 by UV-irradiation approach. Appl Phys A. 2005;80:395398.聽[Crossref], [Web of Science ®],聽
  • Choudhary M, Brink R, Nandi D, et al. Gold nanoparticle within the polymer chain, a multi-functional composite material, for the electrochemical detection of dopamine and the hydrogen atom mediated reduction of Rhodamine-B, a mechanistic approach. J Mater Sci. 2017;52:770781.聽[Crossref], [Web of Science ®],聽
  • Choudhary M, Siwal S, Nandi D, et al. Charge storage ability of the gold nanop旺财体育: towards the performance of a supercapacitor. Appl Surf Sci. 2017;424:151156.聽[Crossref], [Web of Science ®],聽
  • Cameron D, Holliday R, Thompson D. Gold鈥檚 future role in fuel cell systems. J Power Sources. 2003;118:298303.聽[Crossref], [Web of Science ®],聽
  • Zhong C, Luo J, Mott D, et al. Gold-based nanoparticle catalysts for fuel cell reactions in nanotechnology in catalysis. In: Zhou B, Han S, Raja R, et al., editors. Nanotechnology in catalysis 3. New York: Springer; 2007. p. 289307.聽[Crossref],聽
  • Matsuoka K, Miyazaki K, Iriyama Y, et al. Novel anode catalyst containing gold nanop旺财体育 for use in direct methanol fuel cells. J Phys Chem C. 2007;111:31713174.聽[Crossref], [Web of Science ®],聽
  • Fujigaya T, Kim C, Hamasaki Y, et al. Growth and deposition of Au nanoclusters on polymer-wrapped graphene and their oxygen reduction activity. Sci Rep. 2016;6:2131421324.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci. 2000;30:545610.聽[Crossref], [Web of Science ®],聽
  • Pileni MP. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater. 2003;2:145150.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Myers VS, Weir MG, Carino EV, et al. Dendrimer-encapsulated nanop旺财体育: new synthetic and characterization methods and catalytic applications. Chem Sci. 2011;2:16321646.聽[Crossref], [Web of Science ®],聽
  • Choudhary M, Siwal S, Nandi D, et al. Single step synthesis of gold鈥揳mino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin. Physica E. 2016;77:7280.聽[Crossref],聽
  • Choudhary M, Siwal S, Mallick K. Single step synthesis of a silver鈥損olymer hybrid material and its catalytic application. RSC Adv. 2015;5:5862558632.聽[Crossref],聽
  • Taher A, Nandi D, Choudhary M, et al. Suzuki coupling reaction in the presence of polymer immobilized palladium nanop旺财体育: a heterogeneous catalytic pathway. New J Chem. 2015;39:55895596.聽[Crossref], [Web of Science ®],聽
  • Choudhary M, Siwal S, Islam R, et al. Polymer stabilized silver nanoparticle: an efficient catalyst for proton-coupled electron transfer reaction and the electrochemical recognition of biomolecule. Chem Phys Lett. 2014;608:145151.聽[Crossref], [Web of Science ®],聽
  • Choudhary M, Islam R, Witcomb M, et al. In situ generation of a high-performance Pd-polypyrrole composite with multi-functional catalytic properties. Dalton Trans. 2014;43:63966405.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Mahato S, Islam R, Acharya C, et al. Polymer鈥恠tabilized palladium nanop旺财体育 for the chemoselective transfer hydrogenation of 伪,尾鈥恥nsaturated carbonyls: single鈥恠tep bottom鈥恥p approach. ChemCatChem. 2014;6:14191426.聽[Web of Science ®],聽
  • Nandi D, Taher A, Islam R, et al. Carbon nitride supported copper nanop旺财体育: light-induced electronic effect of the support for triazole synthesis. R Soc Open Sci. 2016;3:160580160592.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Nandi D, Siwal S, Choudhary M, et al. Carbon nitride supported palladium nanop旺财体育: an active system for the reduction of aromatic nitro-compounds. Appl Catal A Gen. 2016;523:3138.聽[Crossref], [Web of Science ®],聽
  • Nandi D, Siwal S, Mallick K. Mono arylation of imidazo[1,2鈥a] pyridine and 1,2鈥恉imethyl imidazole: application of carbon nitride supported palladium catalyst. ChemistrySelect. 2017;2:17471752.聽[Crossref], [Web of Science ®],聽
  • Nandi D, Siwal S, Mallick K. A carbon nitride supported copper nanoparticle composite: a heterogeneous catalyst for the N-arylation of hetero-aromatic compounds. New J Chem. 2017;41:30823088.聽[Crossref], [Web of Science ®],聽
  • Wang X, Maede K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2009;8:7680.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Wang Y, Yao J, Li H, et al. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J Am Chem Soc. 2011;133:23622365.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Lyth SM, Nabae Y, Moriya S, et al. Carbon Nitride as a nonprecious catalyst for electrochemical oxygen reduction. J Phys Chem C. 2009;113:2014820151.聽[Crossref], [Web of Science ®],聽
  • Zheng Y, Jiao Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small. 2012;8:35503566.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Mallick K, Witcomb M, Scurrell M. Simplified single-step synthetic route for the preparation of a highly active gold-based catalyst for CO oxidation. J Mol Catal A Chem. 2004;215:103106.聽[Crossref],聽
  • Fina F, Callear S, Carins G, et al. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem Mater. 2015;27:26122618.聽[Crossref], [Web of Science ®],聽
  • Li C, Chen L, Li Q, et al. Seed-free aqueous synthesis of gold nanowires. Cryst Eng Comm. 2012;14:75497551.聽[Crossref],聽
  • Shi Y, Zhu Y, Yu B, et al. Enhanced thermal stability of polystyrene by graphitic carbon nitride/spinel ZnCo2O4 nanohybrids and the catalytic mechanism investigation. RSC Adv. 2015;5:41835鈥41838.聽[PubMed], [Web of Science ®],聽
  • Hashmi ASK, Hutchings GJ. Gold catalysis. Angew Chem Int Ed. 2006;45:78967946.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Guo Q, Zhang Y, Qiu J, et al. Engineering the electronic structure and optical properties of g-C3N4 by non-metal ion doping. J Mater Chem C. 2016;4:6839鈥6847.聽[Crossref],聽
  • Li X, Zhang J, Shen L, et al. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl Phys A. 2009;94:387392.聽[Crossref], [Web of Science ®],聽
  • Siwal S, Choudhary M, Mpelane S, et al. Single step synthesis of a polymer supported palladium composite: a potential anode catalyst for the application of methanol oxidation. RSC Adv. 2016;6:4721247219.聽[Crossref],聽
  • Siwal S, Matseke S, Mpelane S, et al. Palladium-polymer nanocomposite: an anode catalyst for the electrochemical oxidation of methanol. Int J Hydrogen Energy. 2017;42:2359923605.聽[Crossref], [Web of Science ®],聽
  • Siwal S, Ghosh S, Nandi D, et al. Synergistic effect of graphene oxide on the methanol oxidation for fuel cell application. Mat Res Exp. 2017;4:095306095310.聽[Crossref], [Web of Science ®],聽
  • Zhang W, Huang H, Li F, et al. Palladium nanop旺财体育 supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation. J Mater Chem A. 2014;2:1908419094.聽[Crossref], [Web of Science ®],聽
  • Gao L, Yue W, Tao S, et al. Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation. Langmuir. 2013;29:957964.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009;323:760764.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Maldonado S, Stevenson KJ. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B. 2005;109:47074716.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Hwang S, Lee S, Yu JS. Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide. Appl Surf Sci. 2007;253:56565659.聽[Crossref], [Web of Science ®],聽
  • Park SS, Chu SW, Xue H, et al. Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. J Mater Chem. 2011;21:1080110807.聽[Crossref],聽
  • Qin Y, Chao L, Yuan J, et al. Ultrafine Pt nanoparticle-decorated robust 3D N-doped porous graphene as an enhanced electrocatalyst for methanol oxidation. Chem Commun. 2016;52:382385.聽[Crossref], [PubMed], [Web of Science ®],聽
  • Chung DY, Lee KJ, Sung YE. Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation. J Phys Chem C. 2016;120:90289035.聽[Crossref], [Web of Science ®],聽
  • Kepp KP. A quantitative scale of oxophilicity and thiophilicity. Inorg Chem. 2016;55:94619470.聽[Crossref], [PubMed], [Web of Science ®],聽